Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Solomon; A Monte Carlo solver for criticality safety analysis

Nagaya, Yasunobu; Ueki, Taro; Tonoike, Kotaro

Proceedings of 11th International Conference on Nuclear Criticality Safety (ICNC 2019) (Internet), 9 Pages, 2019/09

A new Monte Carlo solver Solomon has been developed for the application to fuel-debris systems. It is designed not only for usual criticality safety analysis but also for criticality calculations of damaged reactor core including fuel debris. This paper describes the current status of Solomon and demonstrates the applications of the randomized Weierstrass function (RWF) model and the RWF model superimposed voxel geometry.

Journal Articles

Monte Carlo criticality analysis under material distribution uncertainty

Ueki, Taro

Journal of Nuclear Science and Technology, 54(3), p.267 - 279, 2017/03

 Times Cited Count:8 Percentile:60.93(Nuclear Science & Technology)

Analysis framework under material distribution uncertainty is investigated for the Monte Carlo (MC) criticality calculation of continuously mixed media formed via molten core concrete interaction. Deterministic trigonometric functions and randomized Weierstrass functions are utilized to represent the spatially continuous variation. Numerical results indicate that the effective multiplication factor (k$$_{rm eff}$$) under random spatial variation can depart significantly from the k$$_{rm eff}$$ of a reference uniform medium. It is also shown that the deterministic modeling provides an upper-bound measure for extreme results from random realizations.

2 (Records 1-2 displayed on this page)
  • 1